

APPLICATION NOTE: SX-ULPGN-BTZ Hosted Mode

Silex Technology America 201 East Sandpointe, Suite 245 Santa Ana, CA 92707 Revision 1.0, August 5, 2019

Revision History

Rev. No.	Date	Revision by	Description
1.0	Aug 05, 2019	T.Nakase	Initial draft

Table of Contents

1.	Scop				
2.	2. References				
2	2.1	QDN Document			
2	2.2	SX-ULPGN-BTZ QSG			
2	2.3	Raspberry Pi 3 Model B+3			
2	2.4	NOOBS Installer			
2	2.5	Raspbian3			
3.	Equi	ipment3			
0	8.1	Hardware3			
0	3.2	Host Processor Board			
0	8.3	Host PC Configuration			
4.	EVK	Board Setup4			
Z	1.1	SX-ULPGN-BTZ Development Environment4			
Z	1.2	Update DevCfg File4			
Z	1.3	Build HostedMode_demo image4			
Z	1.4	Program HostedMode_demo image with JTAG4			
5.	Host	t Processor Board Setup5			
5	5.1	Install Raspbian5			
5	5.2	Build iotd and NB_QCLI_demo5			
5	5.3	Connect EVK board to Host Processor Board5			
6.	Run	Application6			
e	5.1	Configure IoT Daemon			
e	5.2	Start IoT Daemon and NB_QCLI_demo8			

1. Scope

The purpose of this document is to provide a guideline for setting up and evaluating UART and SPI in hosted mode with the SX-ULPGN-BTZ EVK. This document uses Raspberry Pi 3 Model B+ as the host processor board.

Note: The SPI interconnect is not confirmed to be working as of this writing.

2. References

- 2.1 QDN Document
- 2.1.1 QCA402x (CDB2x) Development Kit User Guide, 80-YA121-140 Rev.C

2.2 SX-ULPGN-BTZ QSG

- 2.2.1 SX-ULPGN-BTZ Development Quick Start Guide, 140-00217-100 v1.4
- 2.3 Raspberry Pi 3 Model B+
- 2.3.1 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
- 2.4 NOOBS Installer
- 2.4.1 https://www.raspberrypi.org/downloads/noobs/
- 2.5 Raspbian
- 2.5.1 https://www.raspberrypi.org/downloads/raspbian/

3. Equipment

3.1 Hardware

- The EVK board, SX-ULPGN-BTZ EVK (WCBN3516A_EVB V01)
- Host PC
- USB 2.0 Cable (Type A male Type B male) x2
- USB Gender Changer (Type B female Type A male) x2
- Jumper Cap x9
- Jumper Cable (female female) x3

3.2 Host Processor Board

- Raspberry Pi 3 Model B+ Starter Kit (Element 14 23-20181RK, USB port x 4, HDMI port x 1)
- HDMI monitor
- HDMI cable
- USB keyboard
- USB mouse
- Jumper Cable (female female) x 7 (you can share it with Jumper Cable in Section 3.1)

3.3 Host PC Configuration

- Intel Core i7-4790 Processor @ 3.60 GHz
- 8 GB RAM

- 160GB HDD
- USB 2.0/3.0 x2
- Gigabyte Ethernet Port x1
- Windows 10 Professional
- Username: silex, Account type: Administrator

4. EVK Board Setup

4.1 SX-ULPGN-BTZ Development Environment

Follow Sections 4 through 6 listed in the SX-ULPGN-BTZ QSG document to setup the development environment to your Host PC.

4.2 Update DevCfg File

HostedMode_demo is preconfigured to SPI hosted mode. If you are using the UART interconnect, the DevCfg file must be updated before building the firmware. For details, see Section 9.1.8 of the **QDN Document**.

<SDK_source>\target\quartz\demo\HostedMode_demo\src\export\DevCfgmaster_devcfg_out_cdb .xml

Note: If you don't have this file in the export folder above, run the following command with using the Command Prompt. The files in the export folder will not be populated if you have never built firmware in this project directory.

> build.bat prepare

4.3 Build HostedMode_demo image

Open Command Prompt and go to
 SDK_source>\target\quartz\demo\HostedMode_demo\build\gcc.

2. Run build.bat

> build.bat t 4020 cdb

Note: To build with Eclipse IDE, see Section 7 in the **SX-ULPGN-BTZ QSG document**.

4.4 Program HostedMode_demo image with JTAG

1. Confirm that JTAG is enabled (see Section 6.1.2 in the SX-ULPGN-BTZ QSG document for details.)

2. Open the Command Prompt and go to <SDK_source>\target\quartz\demo\HostedMode_demo\build\gcc.

3. Connect the USB1 and USB2 port on the EVK board to the Host PC with the USB cables (if you haven't already connected the EVK board).

4. Run flash_openocd.bat

> flash_openocd.bat

5. Wait until you see a message that says "Flash Operation Completed Successfully..." on the Command Prompt.

Note: To program with Eclipse IDE, see Section 8 of the SX-ULPGN-BTZ QSG document.

6. Unplug the USB Cables from USB1 and USB2 on the EVK board.

7. Remove the Jumper cables that were installed in this section.

5. Host Processor Board Setup

5.1 Install Raspbian

1. Program the NOOBS installer to your mini SD card.

Note: Generally, the Raspberry Pi Starter Kit includes a mini SD card with pre-programmed NOOBS. For more information, refer to the document from the Starter Kit manufacturer.

2. Insert the micro SD card into the host processor board and power it up.

3. Wait until you see the OS install dialog for NOOBS.

4. Select and install Raspbian Lite.

Note: This document only requires the use of a CLI console. A desktop environment is optional.

5. The system will automatically reboot after successful installation.

6. Login using the default user credentials (user: pi, password: raspberry)

7. Enable the SPI interface with raspi-config. (Select "Interfacing Options" -> "SPI")

5.2 Build iotd and NB_QCLI_demo

Build IoT daemon, iotd and userland application, NB_QCLI_demo on Raspbian. See Section 9.1.5, 9.1.6 and 9.1.7 in the **QDN Document** for details (*before building these, see the below note*).

\$ cd <SDK_source>/target/exthost/Linux/daemon; make

\$ cd <SDK_source>/target/exthost/Linux/qapi; make

\$ cd <SDK source>/target/exthost/Linux/app/NB QCLI demo/build; make

Note: The Host Processor Board GPIO pinout can be matched to the BTZ board CHIP_PWD_L pinout by editing the iotd_config.ini file, but the current SDK release has a bug that will not reflect the setting of this file. To work around this issue, change the QZ_WAKE_GPIOn macro as defined in <SDK_source>/target/exthost/Linux/hif/spi/spi_regs.h as follows:

#define QZ WAKE GPIOn "24"

5.3 Connect EVK board to Host Processor Board

1. There are two ways to connect the EVK board to the Host Processor Board depending on the interconnect you are using: 1.a for UART interconnect or 1.b for SPI interconnect.

1.a Connect USB2 on the EVK board to the USB port of the Host Processor Board with the USB Cable.

1.b Connect the SPI bus with the Jumper Cable as follows:

EVK board	SPI Signal	Host Processor Board
J16.8	CLK	J8.23
J16.10	CS	J8.24
J102.2	MISO	J8.21
J101.2	MOSI	J8.19
J117.2	INT	J8.22 (GPIO25)
J117.1	GND	J8.20
J114.9	CHIP_PWD_L	J8.18 (GPIO24)

2. Connect USB1 and USB2 on the EVK board to the USB port on the Host Processor Board (the position doesn't matter) using the USB Cable.

6. Run Application

6.1 Configure IoT Daemon

1. Login to the Host Processor Board.

2. Edit <SDK_source>/target/exthost/Linux/daemon/iotd_config.ini as indicated with yellowhatching.

```
[SYSTEM]
                 # Number of Quartz Devices
num device=1
num interface=2  # Number of bus interface
                 # Max number of clients
num clients=5
num buffer=20
                  # Max buffer count
pwd gpio=<mark>24</mark>
                  # PWD GPIO pin number
force reset=1
heart beat enable=1
                        #
heart beat interval=15  # heart beat interval in second
throughput test enable=0
                            #
throughput test mode=0
                          # 0-send only, 1:loopback
throughput test interval=5 # test interval in seconds
```

throughput test packet len=1000 # packet length dbg level=1 #debug verbosity level [INTERFACE] # 0:Disable 1:Enable enable=0 # 0:UART, 1:SPI, 2:SDIO type=0 speed=115200 # Baud/frequency # UART Flow Control: 0flow control=0 disable, 1-enable # SPI block Size block size=1024 name=/dev/ttyUSB1 # File name device id=0 # Instance of Quartz device it is associated with # Number of associated num_service_q=6 service queues service qid=0x00,0x01,0x02,0x03,0x04,0x05 # Service queue IDs associated with this interface [INTERFACE] # 0:Disable 1:Enable enable=0 type=1 # 0:UART, 1:SPI, 2:SDIO speed=1000000 # Baud/frequency # UART Flow Control: 0flow control=1 disable, 1-enable # SPI block Size block size=1024 intr gpio=25 # interrupt GPIO pin number name=<mark>/dev/spidev0.0</mark> # File name device id=0 # Instance of Quartz device it is associated with # Number of associated num service q=6 service queues service qid=0x00,0x01,0x02,0x03,0x04,0x05 # Service queue IDs associated with this interface

3. Set 1 to "enable" the parameter of the desired interconnect

7

Use UART interconnect: [INTERFACE] enable=<mark>1</mark> # 0:Disable 1:Enable type=0 # 0:UART, 1:SPI, 2:SDIO ... [INTERFACE] enable=<mark>0</mark> # 0:Disable 1:Enable # 0:UART, 1:SPI, 2:SDIO type=1 ... Use SPI interconnect: [INTERFACE] enable=<mark>0</mark> # 0:Disable 1:Enable type=0 # 0:UART, 1:SPI, 2:SDIO ... [INTERFACE] # 0:Disable 1:Enable enable=1 type=1 # 0:UART, 1:SPI, 2:SDIO

6.2 Start IoT Daemon and NB_QCLI_demo

You will need two separate consoles (or terminals if you're using a desktop environment) to run the IoT Daemon and NB_QCLI_demo at the same time.

1. Start IoT Daemon

...

\$ cd <SDK_source>/target/exthost/Linux/daemon \$ sudo ./output/iotd iotd_config.ini IOTD: Opening config file iotd_config.ini HTC: Initializing SPI interface for target ID 0 Iotd Manager: Recv MGMT_MSG_HELLO resp Target QAPI Ver: 2.0.1 CRM Num: 78 ***** IOT Daemon started ****

8

2. Open another console by pressing Ctrl-Alt-F2 (or open a new terminal in the desktop environment) and login to the Host Processor Board. You can return to the original console using the Ctrl-Alt-F1 command.

3. Start the NB_QCLI_demo

\$ cd <SDK_source>/target/exthost/Linux/app/NB_QCLI_demo/build

\$ sudo ./nb_demo

Sending Hello Message

Received <code>HELLO</code> response from the server.

4. Hit return to see the CLI command prompt and type "help".

> help

Command List:

Commands:

- 0. Ver
- 1. Help
- 2. Exit

Subgroups:

- 3. BLE
- 4. ZigBee
- 5. Debug
- 6. HMI
- 7. Thread
- 8. FwUp
- 9. Coex

>

5. Now you can use the QCLI_demo command that is listed in Section 6 of **the QDN Document**.

Note: As of this writing, no WLAN commands were able to be implemented due to an unstable QAPI.